Signal recognition particle mediates a transient elongation arrest of preprolactin in reticulocyte lysate
نویسندگان
چکیده
Signal recognition particle (SRP) is a ribonucleoprotein that functions in the targeting of ribosomes synthesizing presecretory proteins to the ER. SRP binds to the signal sequence as it emerges from the ribosome, and in wheat germ extracts, arrests further elongation. The translation arrest is released when SRP interacts with its receptor on the ER membrane. We show that the delay of elongation mediated by SRP is not unique to wheat germ translation extracts. Addition of mammalian SRP to reticulocyte lysates resulted in a delay of preprolactin synthesis due to increased ribosome pausing at specific sites on preprolactin mRNA. Addition of canine pancreatic microsomal membranes to reticulocyte lysates resulted in an acceleration of preprolactin synthesis, suggesting that the endogenous SRP present in the reticulocyte lysate also delays synthesis of secretory proteins.
منابع مشابه
Signal Recognition Particle Mediates a Transient Elongation Arrest of Preprolactin in Reticulocyte Lysate
Signal recognition particle (SRP) is a ribonucleoprotein that functions in the targeting of ribosomes synthesizing presecretory proteins to the ER. SRP binds to the signal sequence as it emerges from the ribosome, and in wheat germ extracts, arrests further elongation. The translation arrest is released when SRP interacts with its receptor on the ER membrane. We show that the delay of elongatio...
متن کاملSignal recognition particle causes a transient arrest in the biosynthesis of prepromelittin and mediates its translocation across mammalian endoplasmic reticulum
The translocation of prepromelittin (pPM) across mammalian endoplasmic reticulum was studied in both wheat germ and reticulocyte lysate. In the wheat germ system, signal recognition particle (SRP) caused a transient arrest in the synthesis of pPM. This was indicated by a slowdown in the rate of synthesis of pPM in the presence of SRP. The arrest was specific, dependent on the concentration of S...
متن کاملTranslocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site- specific arrest of chain elongation that is released by microsomal membranes
The previously observed (Walter, et al. 1981 J. Cell Biol. 91:545-550) inhibitory effect of SRP selectively on the cell-free translation of mRNA for secretory protein (preprolactin) was shown here to be caused by a signal sequence-induced and site-specific arrest in polypeptide chain elongation. The Mr of the SRP-arrested nascent preprolactin chain was estimated to be 8,000 corresponding to app...
متن کاملDirect probing of the interaction between the signal sequence of nascent preprolactin and the signal recognition particle by specific cross-linking
We have studied the interaction between the signal sequence of nascent preprolactin and the signal recognition particle (SRP) during the initial events in protein translocation across the endoplasmic reticulum membrane. A new method of affinity labeling was used, whereby lysine residues, carrying the photoreactive group 4-(3-trifluoromethyldiazirino) benzoic acid in their side chains, are incor...
متن کاملSignal Recognition Protein ( SRP ) Causes Signal Sequence - dependent and Site - specific Arrest of Chain Elongation that is Released by Microsomal Membranes
The previously observed (Walter, et al. 1981 1. Cell Biol. 91 :545-550) inhibitory effect of SRP selectively on the cell-free translation of mRNA for secretory protein (preprolactin) was shown here to be caused by a signal sequence-induced and site-specific arrest in polypeptide chain elongation. The M r of the SRP-arrested nascent preprolactin chain was estimated to be 8,000 corresponding to-7...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 109 شماره
صفحات -
تاریخ انتشار 1989